Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255007

RESUMO

Richard Peto's paradox, first described in 1975 from an epidemiological perspective, established an inverse correlation between the probability of developing cancer in multicellular organisms and the number of cells. Larger animals exhibit fewer tumors compared to smaller ones, though exceptions exist. Mice are more susceptible to cancer than humans, while elephants and whales demonstrate significantly lower cancer prevalence rates than humans. How nature and evolution have addressed the issue of cancer in the animal kingdom remains largely unexplored. In the field of medicine, much attention has been devoted to cancer-predisposing genes, as they offer avenues for intervention, including blocking, downregulating, early diagnosis, and targeted treatment. Predisposing genes also tend to manifest clinically earlier and more aggressively, making them easier to identify. However, despite significant strides in modern medicine, the role of protective genes lags behind. Identifying genes with a mild predisposing effect poses a significant challenge. Consequently, comprehending the protective function conferred by genes becomes even more elusive, and their very existence is subject to questioning. While the role of variable expressivity and penetrance defects of the same variant in a family is well-documented for many hereditary cancer syndromes, attempts to delineate the function of protective/modifier alleles have been restricted to a few instances. In this review, we endeavor to elucidate the role of protective genes observed in the animal kingdom, within certain genetic syndromes that appear to act as cancer-resistant/repressor alleles. Additionally, we explore the role of protective alleles in conditions predisposing to cancer. The ultimate goal is to discern why individuals, like Winston Churchill, managed to live up to 91 years of age, despite engaging in minimal physical activity, consuming large quantities of alcohol daily, and not abstaining from smoking.


Assuntos
Elefantes , Medicina , Síndromes Neoplásicas Hereditárias , Humanos , Animais , Camundongos , Elefantes/genética , Alelos , Cetáceos
2.
Genes (Basel) ; 14(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002998

RESUMO

Personalized medicine aims to develop tailored treatments for individual patients based on specific mutations present in the affected organ. This approach has proven paramount in cancer treatment, as each tumor carries distinct driver mutations that respond to targeted drugs and, in some cases, may confer resistance to other therapies. Particularly for rare conditions, personalized medicine has the potential to revolutionize treatment strategies. Rare cancers often lack extensive datasets of molecular and pathological information, large-scale trials for novel therapies, and established treatment guidelines. Consequently, surgery is frequently the only viable option for many rare tumors, when feasible, as traditional multimodal approaches employed for more common cancers often play a limited role. Sebaceous carcinoma of the eyelid is an exceptionally rare cancer affecting the eye's adnexal tissues, most frequently reported in Asia, but whose prevalence is significantly increasing even in Europe and the US. The sole established curative treatment is surgical excision, which can lead to significant disfigurement. In cases of metastatic sebaceous carcinoma, validated drug options are currently lacking. In this project, we set out to characterize the mutational landscape of two sebaceous carcinomas of the eyelid following surgical excision. Utilizing available bioinformatics tools, we demonstrated our ability to identify common features promptly and accurately in both tumors. These features included a Base-Excision Repair mutational signature, a notably high tumor mutational burden, and key driver mutations in somatic tissues. These findings had not been previously reported in similar studies. This report underscores how, in the case of rare tumors, it is possible to comprehensively characterize the mutational landscape of each individual case, potentially opening doors to targeted therapeutic options.


Assuntos
Adenocarcinoma Sebáceo , Carcinoma Basocelular , Neoplasias das Glândulas Sebáceas , Neoplasias Cutâneas , Humanos , Neoplasias das Glândulas Sebáceas/genética , Neoplasias das Glândulas Sebáceas/patologia , Neoplasias das Glândulas Sebáceas/cirurgia , Adenocarcinoma Sebáceo/genética , Adenocarcinoma Sebáceo/patologia , Adenocarcinoma Sebáceo/cirurgia , Pálpebras/patologia , Reparo do DNA
5.
Cells ; 11(14)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35883675

RESUMO

The very first line of defense in humans is innate immunity, serving as a critical strongpoint in the regulation of inflammation. Abnormalities of the innate immunity machinery make up a motley group of rare diseases, named 'autoinflammatory', which are caused by mutations in genes involved in different immune pathways. Self-limited inflammatory bouts involving skin, serosal membranes, joints, gut and other districts of the human body burst and recur with variable periodicity in most autoinflammatory diseases (ADs), often leading to secondary amyloidosis as a long-term complication. Dysregulated inflammasome activity, overproduction of interleukin (IL)-1 or other IL-1-related cytokines and delayed shutdown of inflammation are pivotal keys in the majority of ADs. The recent progress of cellular biology has clarified many molecular mechanisms behind monogenic ADs, such as familial Mediterranean fever, tumor necrosis factor receptor-associated periodic syndrome (or 'autosomal dominant familial periodic fever'), cryopyrin-associated periodic syndrome, mevalonate kinase deficiency, hereditary pyogenic diseases, idiopathic granulomatous diseases and defects of the ubiquitin-proteasome pathway. A long-lasting history of recurrent fevers should require the ruling out of chronic infections and malignancies before considering ADs in children. Little is known about the potential origin of polygenic ADs, in which sterile cytokine-mediated inflammation results from the activation of the innate immunity network, without familial recurrency, such as periodic fever/aphthous stomatitis/pharyngitis/cervical adenopathy (PFAPA) syndrome. The puzzle of febrile attacks recurring over time with chameleonic multi-inflammatory symptoms in children demands the inspection of the mixture of clinical data, inflammation parameters in the different disease phases, assessment of therapeutic efficacy of a handful of drugs such as corticosteroids, colchicine or IL-1 antagonists, and genotype analysis to exclude or confirm a monogenic origin.


Assuntos
Doenças Hereditárias Autoinflamatórias , Imunidade Inata , Amiloidose , Criança , Febre , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/genética , Humanos , Inflamação , Interleucina-1 , Recidiva , Síndrome
6.
Childs Nerv Syst ; 37(8): 2589-2596, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33855610

RESUMO

PURPOSE: Neural tube defects are a group of birth defects caused by failure of neural tube closure during development. The etiology of NTD, requiring a complex interaction between environmental and genetic factors, is not well understood. METHODS: We performed whole-exome sequencing (WES) in six trios, with a single affected proband with spina bifida, to identify rare/novel variants as potential causes of the NTD. RESULTS: Our analysis identified four de novo and ten X-linked recessive variants in four of the six probands, all of them in genes previously never implicated in NTD. Among the 14 variants, we ruled out six of them, based on different criteria and pursued the evaluation of eight potential candidates in the following genes: RXRγ, DTX1, COL15A1, ARHGAP36, TKTL1, AMOT, GPR50, and NKRF. The de novo variants where located in the RXRγ, DTX1, and COL15A1 genes while ARHGAP36, TKTL1, AMOT, GPR50, and NKRF carry X-linked recessive variants. This analysis also revealed that four patients presented multiple variants, while we were unable to identify any significant variant in two patients. CONCLUSIONS: Our preliminary conclusion support a major role for the de novo variants with respect to the X-linked recessive variants where the X-linked could represent a contribution to the phenotype in an oligogenic model.


Assuntos
Defeitos do Tubo Neural , Disrafismo Espinal , Exoma/genética , Predisposição Genética para Doença , Humanos , Defeitos do Tubo Neural/genética , Fenótipo , Disrafismo Espinal/genética , Sequenciamento do Exoma
7.
Genes (Basel) ; 11(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224912

RESUMO

DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.


Assuntos
Metilação de DNA , Epigenômica , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Genoma Humano , Humanos , Fenótipo
8.
Nat Cell Biol ; 15(7): 846-52, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23728424

RESUMO

The polycomb group gene Bmi1 is required for maintenance of adult stem cells in many organs. Inactivation of Bmi1 leads to impaired stem cell self-renewal due to deregulated gene expression. One critical target of BMI1 is Ink4a/Arf, which encodes the cell-cycle inhibitors p16(Ink4a) and p19(Arf). However, deletion of Ink4a/Arf only partially rescues Bmi1-null phenotypes, indicating that other important targets of BMI1 exist. Here, using the continuously growing mouse incisor as a model system, we report that Bmi1 is expressed by incisor stem cells and that deletion of Bmi1 resulted in fewer stem cells, perturbed gene expression and defective enamel production. Transcriptional profiling revealed that Hox expression is normally repressed by BMI1 in the adult, and functional assays demonstrated that BMI1-mediated repression of Hox genes preserves the undifferentiated state of stem cells. As Hox gene upregulation has also been reported in other systems when Bmi1 is inactivated, our findings point to a general mechanism whereby BMI1-mediated repression of Hox genes is required for the maintenance of adult stem cells and for prevention of inappropriate differentiation.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Esmalte Dentário/citologia , Genes Homeobox/fisiologia , Incisivo/citologia , Complexo Repressor Polycomb 1/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Células Cultivadas , Esmalte Dentário/metabolismo , Incisivo/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco/metabolismo
9.
Proc Natl Acad Sci U S A ; 109(2): 466-71, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22190486

RESUMO

The small intestine epithelium undergoes rapid and continuous regeneration supported by crypt intestinal stem cells (ISCs). Bmi1 and Lgr5 have been independently identified to mark long-lived multipotent ISCs by lineage tracing in mice; however, the functional distinctions between these two populations remain undefined. Here, we demonstrate that Bmi1 and Lgr5 mark two functionally distinct ISCs in vivo. Lgr5 marks mitotically active ISCs that exhibit exquisite sensitivity to canonical Wnt modulation, contribute robustly to homeostatic regeneration, and are quantitatively ablated by irradiation. In contrast, Bmi1 marks quiescent ISCs that are insensitive to Wnt perturbations, contribute weakly to homeostatic regeneration, and are resistant to high-dose radiation injury. After irradiation, however, the normally quiescent Bmi1(+) ISCs dramatically proliferate to clonally repopulate multiple contiguous crypts and villi. Clonogenic culture of isolated single Bmi1(+) ISCs yields long-lived self-renewing spheroids of intestinal epithelium that produce Lgr5-expressing cells, thereby establishing a lineage relationship between these two populations in vitro. Taken together, these data provide direct evidence that Bmi1 marks quiescent, injury-inducible reserve ISCs that exhibit striking functional distinctions from Lgr5(+) ISCs and support a model whereby distinct ISC populations facilitate homeostatic vs. injury-induced regeneration.


Assuntos
Biomarcadores/metabolismo , Mucosa Intestinal/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regeneração/fisiologia , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Proteínas de Bactérias , Citometria de Fluxo , Mucosa Intestinal/citologia , Proteínas Luminescentes , Camundongos , Camundongos Mutantes , Complexo Repressor Polycomb 1 , Tamoxifeno , Irradiação Corporal Total
10.
Int J Gynecol Pathol ; 29(1): 33-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19952940

RESUMO

Disorders of sexual development represent a pathologic and clinical challenge. Many different clinical syndromes exist, and several classifications have been proposed in relation to different risks for malignant degeneration. The morphology, cytogenetics, and immunophenotype of a monolateral ovotestis in a 3-month-old individual with ambiguous genitalia and right inguinal mass are reported. The inguinal mass consisted of a tiny female genital tract with a hermaphroditic gonad with focal placental-like alkaline phosphatase-stained gonocytes; chromosome analysis disclosed a mosaic constitution: 46,XderY/45,X with a rearranged Y chromosome. A sharp morphologic distinction between true hermaphroditism and mixed gonadal dysgenesis probably does not exist, and cytogenetic characterization is mandatory. The presence of placental-like alkaline phosphatase-stained gonocytes indicates a high risk of malignant transformation, and justifies the surgical removal of the dysgenetic gonad. Fertility is unlikely.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Disgenesia Gonadal/patologia , Ovário/patologia , Testículo/patologia , Feminino , Genitália/patologia , Disgenesia Gonadal/genética , Humanos , Imuno-Histoquímica , Imunofenotipagem , Recém-Nascido , Masculino , Mosaicismo
11.
Nat Med ; 15(6): 701-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19398967

RESUMO

The in vitro analysis of intestinal epithelium has been hampered by a lack of suitable culture systems. Here we describe robust long-term methodology for small and large intestinal culture, incorporating an air-liquid interface and underlying stromal elements. These cultures showed prolonged intestinal epithelial expansion as sphere-like organoids with proliferation and multilineage differentiation. The Wnt growth factor family positively regulates proliferation of the intestinal epithelium in vivo. Accordingly, culture growth was inhibited by the Wnt antagonist Dickkopf-1 (Dkk1) and markedly stimulated by a fusion protein between the Wnt agonist R-spondin-1 and immunoglobulin Fc (RSpo1-Fc). Furthermore, treatment with the gamma-secretase inhibitor dibenzazepine and neurogenin-3 overexpression induced goblet cell and enteroendocrine cell differentiation, respectively, consistent with endogenous Notch signaling and lineage plasticity. Epithelial cells derived from both leucine-rich repeat-containing G protein-coupled receptor-5-positive (Lgr5(+)) and B lymphoma moloney murine leukemia virus insertion region homolog-1-positive (Bmi1(+)) lineages, representing putative intestinal stem cell (ISC) populations, were present in vitro and were expanded by treatment with RSpo1-Fc; this increased number of Lgr5(+) cells upon RSpo1-Fc treatment was subsequently confirmed in vivo. Our results indicate successful long-term intestinal culture within a microenvironment accurately recapitulating the Wnt- and Notch-dependent ISC niche.


Assuntos
Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Nicho de Células-Tronco/metabolismo , Técnicas de Cultura de Tecidos/métodos , Proteínas Wnt/metabolismo , Envelhecimento/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Imunoglobulinas/imunologia , Intestinos/ultraestrutura , Camundongos , Microscopia Eletrônica , Proteínas do Tecido Nervoso/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Trombospondinas/imunologia , Trombospondinas/metabolismo , Fatores de Tempo
12.
Proc Natl Acad Sci U S A ; 106(17): 7101-6, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19372370

RESUMO

A central question in stem cell biology is whether organ homeostasis is maintained in adult organs through undifferentiated stem cells or self-duplication of specialized cell populations. To address this issue in the exocrine pancreas we analyzed the Bmi1-labeled cell lineage of pancreatic acinar cells. Previously, we had shown that inducible linage tracing with Bmi1-Cre-estrogen receptor (ER) in the small intestine specifically, labels "classical" undifferentiated intestinal stem cells. In this article we demonstrate that the Bmi1-Cre-ER system labels a subpopulation of differentiated acinar cells in the exocrine pancreas whose derivatives are still present, at a steady-state level, 1 year after a single TM pulse. This study suggests that Bmi1 is a marker for a subpopulation of self-renewing acinar cells, indicating that self-renewal is not an exclusive feature of adult undifferentiated stem cells. Further, the extended period that Bmi1-labeled acinar cells retain a pulse of BrdU suggests that some of this subpopulation of cells are not continuously replicating, but rather are set aside until needed. This cellular behavior is again reminiscent of behavior normally associated with more classical adult stem cells. Setting aside cells capable of self-renewal until needed retains the advantage of protecting this subpopulation of cells from DNA damage induced during replication.


Assuntos
Linhagem da Célula , Homeostase , Proteínas Nucleares/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proliferação de Células , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Complexo Repressor Polycomb 1 , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Fatores de Tempo
13.
Nat Genet ; 40(7): 915-20, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18536716

RESUMO

Bmi1 plays an essential part in the self-renewal of hematopoietic and neural stem cells. To investigate its role in other adult stem cell populations, we generated a mouse expressing a tamoxifen-inducible Cre from the Bmi1 locus. We found that Bmi1 is expressed in discrete cells located near the bottom of crypts in the small intestine, predominantly four cells above the base of the crypt (+4 position). Over time, these cells proliferate, expand, self-renew and give rise to all the differentiated cell lineages of the small intestine epithelium. The induction of a stable form of beta-catenin in these cells was sufficient to rapidly generate adenomas. Moreover, ablation of Bmi1(+) cells using a Rosa26 conditional allele, expressing diphtheria toxin, led to crypt loss. These experiments identify Bmi1 as an intestinal stem cell marker in vivo. Unexpectedly, the distribution of Bmi1-expressing stem cells along the length of the small intestine suggested that mammals use more than one molecularly distinguishable adult stem cell subpopulation to maintain organ homeostasis.


Assuntos
Células-Tronco Adultas/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Homeostase/fisiologia , Intestinos/citologia , Intestinos/fisiologia , Óperon Lac , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Complexo Repressor Polycomb 1 , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA